
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1187 — #1213

i
i

i
i

i
i

Section 3.2 C++14 auto Return

decltype(auto) g10(int i)
{

if (i > 1) { return i + g10(i 1); } // Error, return type not known yet
else { return 0; }

}

Perhaps surprisingly, g9 cannot be rewritten using the ternary conditional operator because
return-type deduction cannot occur until both the true and false branches of the ternary
expression have been processed by the compiler:
decltype(auto) g11(int i) // erroneous rewrite of g9
{

return i < 1 ? 0 : i + g11(i 1);
// Error, g11 used before return deduced

}

It is not necessary to provide a return statement at the end of the function if nonvoid
return type has already been deduced. However, the control flow falling off the end of the
function has undefined behavior:
auto g12(bool b) { if (b) return 1; } // Bug, UB if b is false
auto g13(bool b) { if (b) return 1; return; } // Error, deduction mismatch

Type of a function having a deduced return type

Deduced return types are allowed for almost every category of function, including free
functions, static member functions, nonstatic member functions, function templates, mem-
ber function templates, and conversion operators. Virtual functions, however, cannot have
deduced return types:
auto free(); // OK, free function
template <typename T> auto templ(); // OK, function template

struct S
{

static auto staticMember(); // OK, static member function
decltype(auto) member(); // OK, nonstatic member function
template <typename T> auto memberTempl(); // OK, member function template
operator auto() const; // OK, conversion operator
virtual auto virtMember(); // Error, virtual function

};

When one of these functions is later defined or redeclared, it must use the same placeholder
for the return type, even if the actual return type is known at the point of definition:

1187

lorihughes
Inserted Text
=

lorihughes
Inserted Text
[space]

[so everything aligns properly]

lorihughes
Highlight
[set static in code font]

