
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 118 — #144

i
i

i
i

i
i

static_assert Chapter 1 Safe Features

Both f2 and h2 are ill-formed template functions; the cause of their being ill formed has
nothing to do with the template type and hence will always be reported as a compile-
time error in practice. Finally, f3 can be only contextually ill formed, whereas h3 is always
necessarily ill formed, and yet neither is reported by typical compilers as such unless and until
it has been instantiated. Reliance on a compiler not to notice that a program is ill formed
is dubious; see Potential Pitfalls — Static assertions in templates can trigger unintended
compilation failures on page 120.

Use Cases

Verifying assumptions about the target platform

Some programs rely on specific properties of the native types provided by their target
platform. Static assertions can help ensure portability and prevent such programs from
being compiled into a malfunctioning binary on an unsupported platform. As an example,
consider a program that relies on the size of an int to be exactly 32 bits, e.g., due to the use
of inline asm blocks. Placing a static_assert in namespace scope in any of the program’s
translation units will ensure that the assumption regarding the size of int is valid, and also
serve as documentation for readers:
#include <climits> // CHAR_BIT

static_assert(sizeof(int) * CHAR_BIT == 32,
"An int must have exactly 32 bits for this program to work correctly.");

More typically, statically asserting the size of an int avoids having to write code to handle
an int type’s having greater or fewer bytes when no such platforms are likely ever to
materialize:
static_assert(sizeof(int) == 4, "An int must have exactly 4 bytes.");

Preventing misuse of class and function templates

Static assertions are often used in practice to constrain class or function templates to prevent
their being instantiated with unsupported types. If a type is not syntactically compatible
with the template, static assertions provide clear customized error messages that replace
compiler-issued diagnostics, which are often absurdly long and notoriously hard to read.
More critically, static assertions actively avoid erroneous runtime behavior.
As an example, consider the SmallObjectBuffer<N> class templates,4 which provide stor-
age, aligned properly using alignas (see Section 2.1.“alignas” on page 168), for arbitrary
objects whose size does not exceed N:

4A SmallObjectBuffer is similar to C++17’s std::any (cpprefc) in that it can store any object
of any type. Instead of performing dynamic allocation to support arbitrarily sized objects, however,
SmallObjectBuffer uses an internal fixed-size buffer, which can lead to better performance and cache locality
provided the maximum size of all of the types involved is known.

118

lorihughes
Cross-Out

lorihughes
Inserted Text
function templates

lorihughes
Cross-Out

lorihughes
Inserted Text
parameter

lorihughes
Cross-Out

lorihughes
Inserted Text
is not dependent on a

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes




