
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1163 — #1189

i
i

i
i

i
i

Section 3.1 C++11 Ref-Qualifiers

because (a) move construction of std::string objects is cheap and (b) most compilers will
elide the extra move anyway, yielding equivalent code to the RedString case.1

Similarly, the expression BlueString("goodbye").value() yields a temporary std::string,
but in this case the temporary variable is bound to the reference, s2, which extends its life-
time until s goes out of scope. Thus, s2[0] safely indexes a string that is still live.
Note one more, rather subtle, difference between the behavior of value for RedString versus
BlueString:
void f4()
{

RedString rs("hello");
BlueString bs("hello");

std::move(rs).value(); // rs.d_value is unchanged.
std::move(bs).value(); // bs.d_value is moved from.

}

Calling value on an rvalue of type RedString doesn’t actually change the value of d_value;
it is not until the returned rvalue reference is actually used (e.g., in a move constructor)
that d_value is changed. Thus, if the return value is ignored, nothing happens. Conversely,
for BlueString, the return of value is always a move-constructed temporary std::string
object, causing d_value to end up in a moved-from state, even if the return value is
ultimately ignored. This difference in behavior is seldom important in practice, as reasonable
code will assume nothing about the value of a variable after it was used as the argument to
std::move.

Forbidding modifying operations on rvalues

Modifying an rvalue means modifying a temporary object that is about to be destroyed.
A common example of a defect resulting from this behavior is accidental assignment to a
temporary object. Consider a simple Employee class with a name accessor and a function
that attempts to set the name:
#include <string> // std::string

class Employee
{
public:

// ...
std::string name() const;
// ...

};

1Beginning with C++17, the description of the way return values are initialized changed so as to no
longer materialize a temporary variable in this situation. This change is sometimes referred to as guaranteed
copy elision because, in addition to defining a more consistent and portable semantic, it effectively legislates
the optimization that was previously optional.

1163

lorihughes
Cross-Out

lorihughes
Inserted Text
object

[and set whole term in gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
object

[and set whole term in gloss font]

lorihughes
Highlight

lorihughes
Highlight




