
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1162 — #1188

i
i

i
i

i
i

Ref-Qualifiers Chapter 3 Unsafe Features

One downside of this design is that the reference returned from the rvalue-ref-qualified
overload could outlive the RedString object:

void f2()
{

std::string&& s1 = RedString("goodbye").value();
char c1 = s1[0]; // Bug, s1 refers to a destroyed string.

const std::string& s2 = RedString("goodbye").value();
char c2 = s2[0]; // Bug, s2 refers to a destroyed string too.

}

The temporary variable created by the expression RedString("goodbye") is destroyed at the
end of the statement; lifetime extension does not come into play because s is not bound
to the temporary object itself, but to a reference returned by the value member function.
Returning a dangling reference can be avoided by returning by value rather than by
reference:

class BlueString
{

std::string d_value;

public:
BlueString(const char* s = "") : d_value("Blue: ") { d_value += s; }

std::string& value() & { return d_value; }
const std::string& value() const & { return d_value; }

std::string value() && { return std::move(d_value); }
// Note that this third overload returns std::string by value.

// ...
};

void f3()
{

std::string s1 = BlueString("hello").value();

std::string&& s2 = BlueString("goodbye").value();
char c = s2[0]; // OK, lifetime of s has been extended.

}

The expression BlueString("hello").value() yields a temporary std::string initialized
via move-construction from the data member d_value. The variable s1 is, in turn,
move-constructed from that temporary. Compared to the RedString version of value that
returned an rvalue reference, this sequence logically has one extra move operation (two
move-constructor calls instead of one). This extra move does not pose a problem in practice

1162

lorihughes
Cross-Out

lorihughes
Inserted Text
object 

[and set whole term in gloss font]

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes




