“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1153 — #1179

Section 3.1 C++11 Ref-Qualifiers

Reference-Qualified Member Functions

Qualifying a nonstatic member function with either an & or && refines its signature
based on the value category — i.e., lvalue or rvalue, respectively — of the expression
used to evoke it, thus enabling two distinct overloaded implementations of that member
function.

Description

C++ has always supported decorating nonstatic member functions with cv-qualifiers and
allowed overloading on those qualifiers:

struct Classil

{
void mf1l() const; // (1) const-qualified member function
void mf2(); // (2) member function with no qualifiers
void mf2() volatile; // (3) volatile-qualified overload of (2)
}
void f1()
{
Classl uobj;
const Classl cobj;
volatile Classl vobj;
uobj.mf1(); // calls function (1)
cobj.mf1(); // calls function (1)
uobj.mf2(); // calls overloaded function (2)
vobj.mf2(); // calls overloaded function (3)
vobj.mf1(); // Error, no mfl overload matches a volatile object.
cobj.mf2(); // Error, " mf2 " " " const "
}

The cv-qualifiers, const and volatile, optionally appearing after the parameter list of a
nonstatic member function prototype apply to the object on which the member is called
and allow us to overload on the cv-qualification of that object. Overload resolution will
select the closest match whose cv-qualifiers are the same as, or more restrictive than, the
object’s cv-qualification; hence, uobj.mf1() calls a const-qualified member even though
vu is not const. A qualifier cannot be dropped during overload resolution, however, so
vobj.mf1() and cobj.mf2() are ill formed.

C++11 introduced a similar feature, adding optional qualifiers that indicate the valid value
categories for the expression a member function may be invoked on. Declaring a member
function overload specifically for rvalue expressions, for example, allows library writers to
make better use of move semantics. Note that readers of this feature are presumed to be
familiar with value categories and, in particular, the distinction between lvalue and rvalue
references (see Section 2.1.“ Rvalue References” on page 710):

1153


lorihughes
Highlight
[set static in code font]

lorihughes
Highlight
[set static in code font]




