
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 115 — #141

i
i

i
i

i
i

Section 1.1 C++11 static_assert

Compile-Time Assertions

This compile-time analog to the classic runtime assert causes compilation to terminate
with a user-supplied error message whenever its constant-expression argument evaluates
to false.

Description

Assumptions are inherent in every program, whether we explicitly document them or not. A
common way of validating certain assumptions at run time is to use the classic assert macro
found in <cassert>. Such runtime assertions are not always ideal because (1) the program
must already be built and running for them to even have a chance of being triggered and
(2) executing a redundant check at run time typically1 results in a slower program. Being
able to validate an assertion at compile time avoids several drawbacks.

1. Validation occurs at compile time within a single translation unit and therefore doesn’t
need to wait until a complete program is linked and executed.

2. Compile-time assertions can exist in many more places than runtime assertions and
are unrelated to program control flow.

3. No runtime code will be generated due to a static_assert, so program performance
will not be impacted.

Syntax and semantics

We can use static assertion declarations to conditionally trigger controlled compilation
failures depending on the truthfulness of a constant expression. Such declarations are intro-
duced by the static_assert keyword, followed by a parenthesized list consisting of (1)
a constant Boolean expression and (2) a mandatory string literal (see Annoyances —
Mandatory string literal on page 123), which will be part of the compiler diagnostics if the
compiler determines that the assertion fails to hold:
static_assert(true, "Never fires.");
static_assert(false, "Always fires.");

1It is not unheard of for a program having runtime assertions to run faster with them enabled than
disabled. For example, asserting that a pointer is not null enables the optimizer to elide all code branches
that can be reached only if that pointer were null.

115

lorihughes
Cross-Out

lorihughes
Inserted Text
a constant expression that is contextually convertible to `bool`




