
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1143 — #1169

i
i

i
i

i
i

Section 3.1 C++11 noexcept Specifier

circumstances (e.g., embedded systems), we might want to use noexcept to reduce object
code size; see Use Cases — Reducing object-code size on page 1101.
The zero-cost exception model itself (unlike previous models) introduces absolutely no over-
head into the (exception free) hot path, leaving only minimal opportunities for noexcept
to inform the compiler of local “peephole” runtime performance optimization opportunities
— e.g., by eliding unused code explicitly supplied on the hot path by the user. Effec-
tive use of noexcept solely for the purpose of local (nonalgorithmic) runtime object-code
optimızation fairly demands benchmarking to justify the risks associated with premature
specification (see Overly strong contracts guarantees on page 1112) and unexpected program
termination (see Accidental terminate on page 1124).
One possible workaround to avoid such pitfalls would be to make the body of the called
function, g, visible to the calling function, f. Doing so, however, strongly compile-time cou-
ples the entire body of g to f, thereby reducing the independent malleability of g. Currently,
there is no general solution that gives us local code optimization without making a perma-
nent contractual agreement; see Annoyances — Algorithmic optimization is conflated with
reducing object-code size below.

Annoyances

Algorithmic optimization is conflated with reducing object-code size

If a move or swap operation throws an exception in generic code, any modification of the orig-
inal object is considered irreversible because neither the moved-from nor the moved-to object
is known to have a useful value. The noexcept operator (see Section 2.1.“noexceptOperator”
on page 615) and the accompanying noexcept specifier were invented to allow algorithms
— especially those using move or swap operations, such as std::sort and std::rotate —
to choose the fastest way to perform a task without risk of falling into such nonrecoverable
situations. An algorithm can use the noexcept operator to determine (at compile time) if
the move or swap operations it needs to use may throw and, if so, opt to use copy instead
of move so that the original objects remain unchanged in the event of a thrown exception.
Decorating a function with noexcept might lead to some optimizations; see Use Cases —
Reducing object-code size on page 1101. This side effect of noexcept could perhaps provide
an incentive for developers to use the noexcept specifier even when there is no algorithmic
benefit to be had, possibly committing to nonthrowing interfaces too early and thereby
limiting the evolution of the interface design; see Potential Pitfalls — Overly strong contracts
guarantees on page 1112 and Unrealizable runtime performance benefits on page 1134.
Ideally, the compiler could be given enough information to perform optimizations leveraging
a nonthrowing function implementation without contractually obligating the function never
to throw in the future. For any function g whose body is visible in the current translation unit
(e.g., function templates and inline functions from an included header file) or when using
link-time optimization, the compiler can already determine that a function’s implementation
will never throw— even if it is not declared noexcept. Without inspecting the function body,

1143

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Highlight
[remove code font]




