
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1136 — #1162

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

The advent of the zero-cost exception model, which adopted a different set of trade-offs,
eliminated literally all runtime overhead on the hot path at the expense of larger programs
and significantly increased the relative latency on the cold path — e.g, due to likely cache
misses and perhaps even page faults. This newer “zero-cost” model made allowing support
for exception handling practical for a wider range of applications.

The zero-cost exception model In the increasingly ubiquitous zero-cost model,
employed by most modern compilers, the runtime cost of supporting exceptions on the
normal (i.e., exception free) path is effectively zero. That is to say, compared with not sup-
porting exceptions at all, there are no additional machine instructions inserted into the hot
path as result of the model itself: all of the additional object code is implemented in the form
of tables and cold-path code.37

We say effectively here because there exist both theoretical and practical cases where —
if the optimizer somehow knows that a particular function cannot throw — one or more
machine instructions having nothing to do with the exception model itself might be able to
be reordered if not entirely elided from the active instruction stream on the hot path. These
forms of potential collateral optimization are characterized below.
Note that the term zero cost refers to the elimination of bookkeeping on the hot path.
Support for exceptions is never truly free, as there must always be code generated to handle
exceptions and unwind the stack, including calling destructors for local variables.

Theoretical opportunities for performance improvement

There are at least two distinct categories of runtime-performance optimization that a com-
piler could theoretically employ when a called function, g, is known by the compiler not
to throw: (1) when instructions in the generated code are known to be independent, the
compiler has maximum flexibility to choose and order machine instructions (instruction
selection and code motion) so as to to minimize latency and take optimal advantage
of the parallelism and pipelining available in modern CPUs; and (2) when a sequence of
instructions is free from unpredictable branches, the optimizer can discover and elide “dead
code” (code elision), i.e., remove instructions whose effects are never used.
As a hypothetical illustration of this first type of optimization, consider the familiar example
where we have a function, f, having one or more local variables of type S, this time having
a visible and substantial default constructor body along with a potentially opaque non-
trivial destructor. Furthermore, we have a subroutine, g, whose implementation is opaque,
currently noexcept(false) (by default), but happens to not throw. Note that, without
visibility into the body of the constructor of S, the compiler cannot know that there is
no interaction between S and g. Also note that, had the body of g been available, there
would be no need to explicitly state that g does not throw (see Annoyances — Algorithmic
optimization is conflated with reducing object-code size on page 1143):

37For a more detailed yet approachable introduction to the zero-cost exception model, see mortoray13.

1136

lorihughes
Cross-Out

lorihughes
Inserted Text
-




