
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1135 — #1161

i
i

i
i

i
i

Section 3.1 C++11 noexcept Specifier

cache, and — for larger programs — might not even be paged into the computer’s physical
memory (RAM). Regardless of the exception-handling implementation used, throwing an
exception is presumed to be exceptional (atypical) — i.e., all of its handling properly resides
on the cold path.
In a try/catch construct, the try block is always on the hot path of that construct, whereas
the catch block is invariably on the cold path. Even in the absence of an explicit try in the
source code, the compiler must, in certain cases, generate an implicit try/catch with a hot
path when no exception is thrown and a cold path for stack unwinding — i.e., destroying
live, local, non-trivially destructible automatic variables, which might include a rethrow.
Note that a single function might require multiple implicit try blocks — one for each cluster
of such local variables that is followed by a potentially throwing expression; see Use Cases
— Reducing object-code size on page 1101.
Contemporary compilers make an effort to segregate, within the executable image, what
they believe to be seldomly executed sequences of machine instructions and might sequester
them into a distant region of the virtual address space. The path where an exception is
thrown, however, is known with 100% accuracy to be on the cold path, and modern com-
pilers will strive to avoid interleaving such cold-path code alongside frequently executed
instructions.

Older exception-handling implementations Prior to the ubiquitous adoption of the
zero-cost exception model (described below), most compilers would perform stack-based
bookkeeping to dynamically track the currently active nested try blocks at any point in the
execution of the function.
For example, one implementation36 would create a new exception-registration record for
each try block, including those generated implicitly. Each registration record would hold
two pointers: one to the exception-handler code and the other to the previous exception
registration record. On entry to each try block (implicit or otherwise), the compiler would
insert instructions to construct the exception registration record, add it to the linked list of
active try blocks, and update a thread-local pointer to the new exception registration record.
If an exception were to be thrown, the exception-handling logic would walk the linked list of
registered blocks, calling each handler in turn as it unwound the stack. The compiler would
also insert code at the end of the try block to handle the normal (i.e., exception free) case
of restoring the thread-local pointer to the previous registration record, thereby removing
the block from the linked list and restoring the previous dynamic exception handling state.
In these old models, registration and deregistration instructions were executed on the hot
path on, respectively, entry to and exit from each try block — even when no exception was
thrown. The runtime burden of exception support strongly favored the normal, nonexception
case, but the runtime cost was nonzero. These instructions added overhead on the hot path
that many considered onerous enough to choose to forgo using exceptions entirely, building
their programs with exceptions disabled (e.g., using a compiler switch).

36Compilers for 32-bit Windows platforms continue to use this non-zero-cost exception-handling model;
see pietrek97.

1135

lorihughes
Cross-Out

lorihughes
Inserted Text
-




