
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1134 — #1160

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

In the above final version, eval7, the subexpression std::string(std::forward<S>(str))
will be noexcept(true) if and only if it would invoke a noexcept constructor were it actually
evaluated, thus expressing the correct predicate for the pass-through function.

Unrealizable runtime performance benefits

As we know (see Use Cases — Reducing object-code size on page 1101), using noexcept
under certain well-understood circumstances can measurably reduce object-code size.
Conventional wisdom suggests that “less code runs faster” and “more code runs slower.”
When there is less object code, it typically means that fewer machine instructions are exe-
cuted. When there is more code, there might be more proximate instructions that — even
if seldom executed — can nonetheless put pressure on a limited hardware resource, namely,
the instruction cache.
Historically, support for exceptions resulted in executing additional instructions along the
exception free path— even when no exceptions were thrown. With the increasingly ubiq-
uitous use of the zero-cost exception model, no additional proximate machine instruc-
tions are introduced to support exceptions when an exception is not thrown — a.k.a the hot
path. In adopting this zero-cost model, we aggressively trade off both latency and through-
put when an exception is actually thrown — a.k.a., the cold path.
Despite contributing no overhead on the exception free path, a call to a function that
could potentially throw might, however, preclude otherwise beneficial optimizations. Short
of disabling all support for exceptions ubiquitously (e.g, on the compiler’s command line),
the best we can do currently to reinstate such runtime optimization opportunities is either
to (1) make the body of a nonthrowing function visible when compiling a function that calls
it, or (2) declare the nonthrowing function as noexcept, but see Annoyances — Algorithmic
optimization is conflated with reducing object-code size on page 1143.
It will turn out that — unlike algorithmic improvements — opportunistic use of noexcept
solely as a hint to enable the compiler to optimize runtime performance will seldom provide
any gains, let alone consequential ones; hence, its widespread use throughout a codebase
for such a purpose would be highly dubious34; see Overly strong contracts guarantees on
page 1112.
Chandler Carruth said it best35:

If you didn’t write a benchmark for your code, you do not care about perfor-
mance. That’s not an opinion, Okay? That’s fact.

The hot path and the cold path We call the code that runs in the common, or typical,
case the hot path to reflect that it is the path that is almost always taken. We call the
exceptional case the cold path because it is by far the path less traveled, is unlikely to be in

34On MSVC 19.29 (c. 2021), adding noexcept(true) to an inline function — especially a member function
of a DLL-exported class — might yield a significant drop in runtime performance; see dekker19a.

35carruth17, time 3:56–4:38

1134

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Highlight
[remove code font]




