
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1132 — #1158

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

unnecessary default-constructible constraint on that type, the solution is to use the C++11
library function std::declval, defined within the <utility> header:
template <typename T>
typename std::add_rvalue_reference<T>::type std::declval() noexcept;

The std::declval function is not defined, so it is an error to call it in a context where it
would actually be evaluated. Its purpose is to create a reference to a type that can be used
in an unevaluated context such as within the noexcept operator, decltype, alignof, or
sizeof. We can use std::declval to create a more general definition of eval2 (e.g., eval3)
with a correctly deduced exception specification:
#include <utility> // std::declval, std::forward

template <typename F, typename T>
void eval3(F f, T&& arg) noexcept(noexcept(f(std::declval<T>())))
{

f(std::forward<T>(arg));
}

Note that calling this function can still throw if the copy or move constructor or destructor
for the functor type F can throw. Avoiding an unnecessary copy of F is why, in practice, F
would typically be passed by reference:
template <typename F, typename T>
void eval4(F&& f, T&& arg)

noexcept(noexcept(std::declval<F>()(std::declval<T>())))
{

std::forward<F>(f)(std::forward<T>(arg));
}

The observant reader will have noticed that all this trouble arises from trying to avoid using
function parameters in the exception specification. These parameters are in scope, as the
exception specification follows the function parameter list, so the simplest and most reliably
correct form of the exception specification would simply contain a copy of the expression
used in the body of the function:
template <typename F, typename T>
void eval5(F&& f, T&& arg)

noexcept(noexcept(std::forward<F>(f)(std::forward<T>(arg))))
{

std::forward<F>(f)(std::forward<T>(arg));
}

Because the noexcept specification exactly mirrors the expression of concern, there is no
chance of a discrepancy between the two. Unfortunately, this idiom requires significant code
duplication; see Annoyances — Code duplication on page 1144.
The example of eval1 incorrectly produced a noexcept(false) specification, but it is also
possible to produce an erroneous noexcept(true) specification if an important part of the

1132

lorihughes
Cross-Out

lorihughes
Inserted Text
declared




