
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1131 — #1157

i
i

i
i

i
i

Section 3.1 C++11 noexcept Specifier

whether any part of the expression — the function as well any expressions used in its argu-
ments — might throw. Failing to grasp this subtlety can result in a function being marked
noexcept(false) even when the expression required by the implementation does not throw.
Consider a function template eval1 that takes an invocable object f of the template pa-
rameter type F and calls it with a string argument, stringArg, of type const std::string&.
We want eval1 to have the same exception specification as f::operator():
#include <string> // std::string

template <typename F>
void eval1(F f, const std::string& stringArg) noexcept(noexcept(f(""))) // Bug
{

f(stringArg);
}

Here, we are making a concerted effort to pass the exception specification from f through
to the exception specification of eval1. For conciseness, we pass an empty string as a
placeholder for the string argument in the expression given to the noexcept operator,
reasoning that the expression is unevaluated and hence can be safely abbreviated. Alas, if
the argument to f has type const std::string&, then passing "" requires a call to the
potentially throwing converting constructor, std::string(const char*). Consequently,
noexcept(f("")) would be false because noexcept(std::string("")) is false regardless
of whether the call to f is guaranteed not to throw when called with an already constructed
std::string, such as the object referred to by stringArg.
The obvious fix in this case is to use exactly the same expression in the noexcept specifier
that is used in the return statement, i.e., f(stringArg). Before we explore this approach,
let’s consider a couple of alternatives that might be more appealing in the case of more
complex expressions. The argument to f must be a nonthrowing expression that can bind
to a const std::string& without invoking any possibly throwing conversions. A simple fix
in this case, therefore, would be to simply switch our placeholder string to an invocation of
the default constructor for std::string, which is declared noexcept:
#include <string> // std::string

template <typename F>
void eval2(F f, const std::string& stringArg)

noexcept(noexcept(f(std::string()))) // OK
{

f(stringArg);
}

This fix, however, does not generalize to the case where F is passed an argument that is
dependent on a template parameter type, perhaps using perfect forwarding (see Sec-
tion 2.1.“Forwarding References” on page 377). Because the type of the argument to f
is not known until the template is instantiated, it is not known whether it has a default
constructor nor whether any such default constructor is noexcept. Rather than place an

1131

lorihughes
Highlight
[set return in code font]




