“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1120 — #1146

noexcept Specifier Chapter 3 Unsafe Features

Finally, we will often encounter general functions, e.g., getGoodNewsPlease, which must
rely on an optimistic function in their implementation but report other erroneous situations
through reliably methods:

const char* getGoodNewsImp(Mutex* p); // reliable function
// Return good news; otherwise return nullptr.

const char* getGoodNewsPlease() // general function
// Return good news; otherwise return nullptr.

{
Mutex* mtx = allocateMutex(); // fallible
return getGoodNewsImp(mtx); // reliable

}

In the admittedly contrived example above, a reliable function, getGoodNewsImp, having a
reporting contract and an infallible implementation, is called from a function,
getGoodNewsPlease, that calls an optimistic function having a fallible implementation.
Consequently, the higher-level wrapper function has a reporting contract and a fallible
implementation.

Determining whether a function overall is nofail can be challenging, especially with more
involved reporting mechanisms than a simple return status. Recall that the fopen function
returned status in two ways: (1) via the return and (2) via global state. To report success/
failure, only a single bit need be transmitted. Two other possible reporting channels would
be to signal or to throw an exception.

As our next specimen, let’s look at two seemingly similar member functions of std: :vector:

#include <stdexcept> // std::out_of_range

template <typename T>
class vector {
/7 ..
T& operator[](std::size_t index);
// Return a reference to the modifiable element at the specified index.
// The behavior is undefined unless index < size().

T& at(std::size_t index);
// Return a reference to the modifiable element at the specified index
// unless !(index < size()) in which case throw std::out_of_range.
/7.

I

Can we say that either of these contracts is nofail? The answer is yes, exactly one, but
which one? Recall that answering this question involves answering two subquestions: (1)
is—the—eontract nenreperting and (2) is the implementation infallible. When it is not
immediately obvious, it can be helpful to translate a function that reports errors by some
other mechanism to a canonical form that returns zero on success and a nonzero value
otherwise, possibly storing additional information in global state (e.g., errno):

1120


lorihughes
Cross-Out

lorihughes
Inserted Text
is this a nonreporting contract

[set nonreporting contract in glossary font]




