
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1116 — #1142

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

the same way that the return value restricts the potential values that can be returned
normally.27

Yet another consideration when marking as noexcept a function having a specifically nar-
row contract involves the relative ease of validating defensive precondition checks. Library
authors will often want to respond to simple, easily detected violations of a contract by
providing, in certain assertion-enabled build modes modes, a defensive check, e.g., using a
C-style assert. A more sophisticated defensive-checking framework28 might be configured
to throw an exception (e.g., contract_violation) when an out-of-contract call is detected;
such a configuration could be used within a unit-testing framework to test the defensive
checks themselves without causing the test program to terminate. If, however, a function
having a narrow contract is marked as noexcept, then such a framework would not work,
as the attempt to throw contract_violation would always terminate the program.
Just prior to the release of C++11, the Standard Library adopted the cautious principle
of deliberately not marking functions in the Standard Library having narrow contracts as
noexcept, thereby granting implementers freedom to add such specifications where they
believe their own implementation might benefit. This principle is known as the Lakos Rule
after John Lakos, one of this book’s authors, who originally put forward the guideline.29

Common best practice these days — especially given the increasingly wide adoption of the
zero-overhead exception model — is to treat the use of exceptions in contracts as truly
exceptional. Hence, we would not expect an exception to be thrown with any frequency in
a modern, well-designed, defect-free program operating within the limits of its platform’s
available resources.
When acquiring relatively low-level system resources, such as opening a socket or a known-
to-exist file, errors, though relatively rare, do occasionally occur. Despite their rarity, the
inordinately large latency and inherent nonparallelizability associated with propagating an
exception when it does occur can often prove prohibitive. Reproducible benchmarks using
the zero-cost model show that a thrown exception is typically “orders of magnitude” slower
than returning an error status.30 Hence, it is not uncommon for such system-level features
to opt for other means of communicating such infrequent but urgent information. Ironically,
widespread use of noexcept is inconsistent with any use of exceptions to propagate excep-
tional failures up through enough stack frames to reach one where sufficient context exists
to properly address the error; see Accidental terminate on page 1124.

Conflating noexcept with nofail

A function that is declared noexceptmight not be nofail. Moreover, a function that happens
to be nofail (today) might not be declared noexcept, and perhaps for good reason; see Overly

27See lakos14b, time 17:57.
28bde14, /bsl/bsls/bsls_assert
29meredith11
30See nayar20.

1116

lorihughes
Inserted Text
a 

lorihughes
Cross-Out




