
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 111 — #137

i
i

i
i

i
i

Section 1.1 C++11 Raw String Literals

The delimiter can be — and, in practice, often is — an empty character sequence:
const char s7[] = R"("Hello, World!")";

// OK, equivalent to \"Hello, World!\"

A nonempty delimiter — e.g., ! — can be used to disambiguate any appearance of the)"
character sequence within the literal data:
const char s8[] = R"!(" R"(Raw literals are not recursive!)" ")!";

// OK, equivalent to \" R\"(Raw literals are not recursive!)\" \"

Had an empty delimiter been used to initialize s8 in the example above, the compiler would
have produced a perhaps obscure compile-time error:
const char s8a[] = R"("R"(Raw literals are not recursive!)" ")";

// ^~
// Error, decrement of readonly location

In fact, it could turn out that a program with an unexpectedly terminated raw string literal
could still be valid and compile quietly:
void emitPith()
{

printf(R"("LiveFree, don't (ever)","Die!");
// prints "LiveFree, don't (ever

printf((R"("LiveFree, don't (ever)","Die!"));
// prints Die!

}

Fortunately, examples like the one above are invariably contrived, not accidental.

Use Cases

Embedding code in a C++ program

When a source code snippet needs to be embedded as part of the source code of a C++
program, use of a raw string literal can significantly reduce the syntactic noise that would
otherwise be caused by repeated escape sequences. As an example, consider a regular expres-
sion for an online shopping product ID represented as a conventional string literal:
const char* productIdRegex = "[09]{5}\\(\".*\"\\)";

// This regular expression matches strings like 12345("Product").

Not only do the backslashes obscure the meaning to human readers, a mechanical translation
is often needed when transforming between source and data, such as when copying the
contents of the string literal into an online regular-expression validation tool, and introduces
significant opportunities for human error. Using a raw string literal solves these problems:
const char* productIdRegex = R"([09]{5}\(".*"\))";

111

lorihughes
Inserted Text
"

lorihughes
Inserted Text
"

lorihughes
Inserted Text
"

lorihughes
Inserted Text
"

