
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1104 — #1130

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

• If the body of a non-trivial destructor (e.g., S::~S()) is visible to the compiler and is
found to be a no-op — whether or not it is declared inline — then the optimizer can
treat it as trivial, eliminating condition (1), above.

• If the body of a potentially throwing operation is visible to the compiler and is deter-
mined not to throw, then the optimizer can treat that operation as not potentially
throwing, possibly eliminating conditions (2) and (3), above.

For an exception specification to reduce the size of generated code, that specification must
relieve the compiler of some obligation; specifically, the added specification must relieve
the function of its obligation to generate some or all of the unwinding logic for a particular
function. If function ff, above, were decorated with noexcept, then the compiler would have
the option not to lay down code (1) to unwind the stack or (2) even to destroy s1 and s2 prior
to calling std::terminate in the event that an invocation of gg throws. Hence — in theory
— a compiler can presumably generate less unwinding code for a noexcept function simply
by not destroying any local variables when an uncaught exception tries to escape. Adding
a noexcept specification does, however, place one additional obligation on the function
itself: The function must now take responsibility for ensuring that there is no possibility
of an exception reaching the caller. If there are any potentially throwing expressions in
the function, it is required to handle any attempt to unwind by ending with a call to
std::terminate(), which will unconditionally end the program. Note that std::terminate
invokes a terminate_handler, which can be set globally using std::set_terminate. It is
undefined behavior if this function returns normally or does not terminate execution of
the program. This additional call to std::terminate might result in a (typically small)
increase in the size of the .o file, but not necessarily that of a final optimized program.16

Decorating a function with noexcept can also reduce the size of its caller, sometimes sub-
stantially, even if the called function sees little or no benefit, but see Potential Pitfalls —
Overly strong contracts guarantees on page 1112 and Accidental terminate on page 1124.
For example, consider what would happen if we were to decorate function gg, above, with
noexcept: The two calls to function gg in the body of function ff would no longer be poten-
tially throwing; thus, ff would no longer need any stack-unwinding code. This code-size
reduction was observed in every compiler we tested with.17 Note that no such size reduc-
tion would be expected if S were trivially destructible (condition #1) or if all invocations
of gg took place prior to the construction of any nonstatic local variables of non-trivially
destructible type (condition #3), as no unwinding logic would be required in the first place.
A simple yet fairly general framework to investigate the effects of the noexcept specifier on
generated-code size might consist of a non-trivially destructible class type, S; the declaration

16In our observations, GCC 8 (c. 2018) and higher and MSVC 14.x (c. 2019) typically generate less code,
sometimes significantly less (but never more), on the cold path when a function meeting all three of the above
conditions is declared noexcept. Conversely, Clang 12.0 (c. 2021), though generating smaller stack-unwinding
code in general (compared to GCC), does generate slightly more object code with noexcept than without it
to include a definition of the runtime-support function __clang_call_terminate.

17Experiments were performed with GCC 7.1.0 (c. 2017) GCC 11.1 (c. 2021), Clang 12.0 (c. 2021), and
MSVC 19.29 (c. 2021).

1104

lorihughes
Highlight
not code




