
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 110 — #136

i
i

i
i

i
i

Raw String Literals Chapter 1 Safe Features

If we use the basic syntax for a raw string literal, we will get a syntax error:
const char s3[] = R"(printf("printf(\"Hello, World!\")"))"; // collision
// ^^
// syntax error after literal ends

To circumvent this problem, we could escape every special character in the string separately,
as in C++03, but the result is difficult to read and error prone:
const char s4[] = "printf(\"printf(\\\"Hello, World!\\\")\")"; // error prone

Instead, we can use the extended disambiguation syntax of raw string literals to resolve the
issue:
const char s5[] = R"###(printf("printf(\"Hello, World!\")"))###"; // cleaner

This disambiguation syntax allows us to insert an essentially arbitrary sequence of characters
between the outermost quote/parenthesis pairs such that the combined sequence — e.g.,
)###" — avoids the collision with the literal data:

// delimiter and parenthesis
// v~~~ ~~~v
const char s6[] = R"xyz(< Literal String Data >)xyz";
// ^ ^~~~~~~~~~~~~~~~~~~~~~~~~~^
// | string contents
// |
// | uppercase R

The delimiter of a raw string literal can comprise any member of the basic source char-
acter set except space, backslash, parentheses, and the control characters representing
horizontal tab, vertical tab, form feed, and new line.
The value of s6 above is equivalent to "< Literal String Data >". Every raw string
literal comprises these syntactical elements in order:

• An uppercase R

• The opening double quotes, "

• An optional arbitrary sequence of characters called the delimiter (e.g., xyz)

• An opening parenthesis, (

• The contents of the string

• A closing parenthesis, )

• The same delimiter specified previously, if any (i.e., xyz, not reversed)

• The closing double quotes, "

110

lorihughes
Cross-Out

lorihughes
Inserted Text
up to 16

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes




