
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1096 — #1122

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

CloningPtr has a default constructor that creates a null pointer and a value constructor that
allocates a copy of its argument on the heap. When a CloningPtr object is copied using the
copy constructor or copy-assignment operator, a new copy of the source’s managed object
is allocated for the target CloningPtr to manage. Copy construction and copy assignment
are potentially throwing operations because they (1) allocate memory and (2) call T’s copy
constructor.
Now let’s consider whether CloningPtr would benefit from defining move operations. A
CloningPtr allocates a resource (the pointed-to object), and it can safely transfer that
resource — via simple pointer moves — to the moved-to object without invoking any poten-
tially throwing operations. We have, therefore, implemented a move constructor and move-
assignment operator, both of which are decorated with the noexcept specifier. In both
move operations, the d_owned_p pointer is copied from the moved-from object to the moved-
to object, and then the moved-from object is set to null (to avoid having two CloningPtr
objects attempting to own the same resource).
Note that std::swap<T> is declared such that when T’s move constructor and move-
assignment operator are both noexcept, std::swap<T> is noexcept automatically:
namespace std {

template <typename T>
void swap(T& left, T& right) // Note use of conditional noexcept syntax.

noexcept(is_nothrow_move_constructible<T>::value &&
is_nothrow_move_assignable<T>::value);

} // close std namespace

Thus, we need not provide a custom swap function for CloningPtr because the global one,
provided by the Standard Library as the default, will do the job:
#include <string> // std::string
#include <utility> // std::swap
#include <type_traits> // std::is_nothrow_move_constructible,

// std::is_nothrow_move_assignable
#include <cassert> // standard C assert macro

void f1()
{

typedef CloningPtr<std::string> PtrType;

PtrType p1("hello");
PtrType p2(p1); // Clones the string owned by p1
assert(*p1 == "hello");
assert(*p2 == "hello");

static_assert(std::is_nothrow_move_constructible<PtrType>::value, "");
static_assert(std::is_nothrow_move_assignable<PtrType>::value, "");

1096

lorihughes
Cross-Out

lorihughes
Inserted Text
namespace std

[transposing current order]




