
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1094 — #1120

i
i

i
i

i
i

noexcept Specifier Chapter 3 Unsafe Features

not required to destroy any objects whose lifetime ends between the throw and the function
entry. Skipping this unwinding allows the compiler to eliminate otherwise unused cleanup
code, producing a smaller program. Moreover, when the compiler sees that a function has a
nonthrowing exception specification, it can safely assume that no exceptions will be thrown
when calling that function and so can eliminate other cleanup code associated with handling
potentially thrown exceptions; see Use Cases — Reducing object-code size on page 1101.
Finally, explicit use of noexcept is not an entirely new code-elimination opportunity as the
compiler could perform a similar analysis on, say, the body of an inline function (or, for
smaller programs, on the compiled application during link-time optimization). However,
because the noexcept specifier resides on the declaration of the function, that specifier is
necessarily visible when the caller is compiled. As a result, explicit use of an exception
specification simplifies the analysis a compiler would have to perform, making the poten-
tial optimization more viable when separately compiling each individual translation unit
and, hence, more likely, but see Potential Pitfalls — Overly strong contracts guarantees on
page 1112 and Potential Pitfalls — Unrealizable runtime performance benefits on page 1134.

Use Cases

Declaring nonthrowing move operations

The most common algorithmic benefits of the noexcept feature accrue to types having
move and swap operations that are guaranteed not to throw. Operations such as resizing
an std::vector, for example, can use move construction instead of copy construction
to transfer elements from a smaller memory buffer to a larger one without concern that an
exception will occur in the middle (e.g., due to potential dynamic memory allocation) and
thus leave the vector in a half-moved state. It therefore behooves us to consider whether our
classes can have such nonthrowing move and swap operations whenever runtime performance
matters and annotate them with noexcept where applicable.
The first question we must ask ourselves when considering themove operations of a new class
is whether the class can benefit from having a move constructor or move-assignment
operator. A class that does not allocate resources seldom needs move operations that are
distinct from its copy operations. If resources are managed by one or more data members
or base classes, the defaulted move operations are often sufficient. Note that any implicitly
defaulted move operation will be suppressed by a user-declared copy operation; e.g., a user-
declared copy constructor will suppress an implicit move constructor. See Section 1.1.
“Defaulted Functions” on page 33.
A user-provided move operation will, by default, be noexcept(false); it can and should be
declared with the noexcept specifier whenever it does not invoke any throwing operation
during the move. Let’s, for example, define a smart pointer class, CloningPtr, that owns
its pointed-to object and whose copy constructor and copy-assignment operator copy
the owned object; two CloningPtr objects will never point to the same object:
template <typename T>
class CloningPtr

1094

lorihughes
Highlight
not code




