“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1086 — #1112

noexcept Specifier Chapter 3 Unsafe Features

struct D2 : B // The noexcept on an overriding function must be compatible.

{

int foo() const& override; // Error, incompatible exception specification
int bar() const& override; // OK

i

template <typename T>
auto sum(T a, T b) noexcept -> decltype(a + b); // goes before trailing return

Note that exception specifications on overriding virtual functions must be compatible with
(i.e., the same or stricter than) the corresponding virtual function declaration(s) in the
corresponding base class(es) — e.g., see structs D1 and D2 above. For additional details
and a full example involving dynamic exception specifications, see Section 2.1.“noexcept
Operator” on page 615.

Decorating a function using just the keyword noexcept is equivalent to using the longer,
conditional noexcept syntax, noexcept(true). The absence of noexcept, other than for
the special cases of defaulted special member functions (see Section 1.1.“Defaulted
Functions” on page 33), as well as any destructors and deallocation functions (see below),
is equivalent to using the conditional noexcept syntax, noexcept (false).

An implicitly declared special member function for a class type, T, will be noexcept (true)
unless the implicitly generated function must invoke a function that is not
noexcept(true).

A user-declared special member function having no explicitly stated exception speci-
fication that is defaulted in class scope will have the same exception specification as if it
had been declared implicitly. If a defaulted user-declared special member function is also
decorated with an explicitly stated exception specification, the stated specification will be
honored irrespective of what might have otherwise been generated implicitly.?

For example, consider a family of classes, S0 ... S3, each having an explicitly stated exception
specification for, say, its user-declared default constructor (but the same applies to the other
five special member functions too)?:

2 As originally designed for C+411, providing an exception specification on a defaulted user-declared special
member function that did not match the implicit exception specification was ill formed. In 2014, a solution to
CWG issue 1778 (usal3) was resolved — as a defect report — so that any such previously illformed special
member functions would become deleted. Implementing this change proved problematic because exception
specifications — being a complete-class context — could not generally be determined implicitly before
they were needed. Moreover, C++ developers might legitimately want to explicitly supersede the implicitly
generated exception specification in either direction; see Use Cases — Declaring nonthrowing move operations
on page 1094. In 2019, changes introduced by smith19 — also as a defect report — enabled an explicit
exception specification on a defaulted user-declared special member function to simply take precedence over the
implicit specification.

3Note that on older compilers that predate the implementation of the aforementioned changes the con-
structor of S3 will be deleted, as will the corresponding implicit constructors of €3 and D3 below.

1086


lorihughes
Cross-Out

lorihughes
Inserted Text
-




