
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1085 — #1111

i
i

i
i

i
i

Section 3.1 C++11 noexcept Specifier

The noexcept Function Specification

A function having a noexcept exception specification denotes a programmatically observ-
able, runtime-enforced guarantee that no thrown C++ exception will ever escape that
function’s body.

Description

C++, when first standardized in 1998, provided a mechanism to declare which specific excep-
tion types a function may throw including none at all (throw()), and to detect any violations
of that specification at runtime by terminating the program; see Section 2.1.“noexcept
Operator” on page 615. In practice, using this feature, known as dynamic exception
specifications, led to more fragile and less efficient programs and, hence, was never used
widely. This original foray into exception specifications was deprecated by C++111 in favor
of a simpler scheme — employing a newly minted keyword, noexcept — that communicates
only the critically important information of whether a thrown exception (of any kind) may
ever escape from the body of a function so annotated.

Unconditional exception specifications

We may choose to decorate a function to indicate that it cannot exit via a thrown exception;
any exception that would have escaped will instead be caught automatically at runtime, and
std::terminate will be invoked (see Potential Pitfalls — Overly strong contracts guarantees
on page 1112). We provide this programmatically accessible annotation by inserting the
noexcept exception specification after the parameter list and (for a member function) any
cv-ref qualifiers, but before any pure-virtual marker (= 0), any specifiers such as override
(see Section 1.1.“override” on page 104), or final (see Section 3.1.“final” on page 1007),
and, if present, any trailing return type (see Section 1.1.“Trailing Return” on page 124):
struct B // noexcept goes after any cvref qualifiers but before = 0.
{

virtual int foo() const& noexcept = 0; // The noexcept keyword goes thusly.
virtual int bar() const& = 0; // Derived classes may have an exception spec.

};

struct D1 : B // noexcept goes before override or final.
{

int foo() const& noexcept override; // OK
int bar() const& noexcept override; // OK

};

1C++17 removed all support for dynamic exception specifications; only the throw() spelling remained
(until C++20 when that too was removed) and only as an alias for noexcept.

1085

lorihughes
Cross-Out

lorihughes
Inserted Text
Nonthrowing-

lorihughes
Cross-Out

lorihughes
Inserted Text
er

[Specifier]




