
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1082 — #1108

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

When writing a specialization,
be careful about its location;
or to make it compile
will be such a trial
as to kindle its self-immolation.

Only one namespace can contain any given inline namespace

Unlike conventional using directives, which can be used to generate arbitrary many-to-
many relationships between different namespaces, inline namespaces can be used only to
contribute names to the sequence of enclosing namespaces up to the first noninline one. In
cases in which the names from a namespace are desired in multiple other namespaces, the
classical using directive must be used, with the subtle differences between the two modes
properly addressed.
As an example, the C++14 Standard Library provides a hierarchy of nested inline name-
spaces for literals of different sorts within namespace std.

• std::literals::complex_literals

• std::literals::chrono_literals

• std::literals::string_literals

• std::literals::string_view_literals

These namespaces can be imported to a local scope in one shot via a using std::literals
or instead, more selectively, by using the nested namespaces directly. This separation of the
types used with user-defined literals, which are all in namespace std, from the user-
defined literals that can be used to create those types led to some frustration; those who
had a using namespace std; could reasonably have expected to get the user-defined literals
associated with their std types. However, the types in the nested namespace std::chrono
did not meet this expectation.11

Eventually both solutions for incorporating literal namespaces, inline from
std::literals and noninline from std::chrono, were pressed into service when, in C++17,
a using namespace literals::chrono_literals; was added to the std::chrono name-
space. The Standard does not, however, benefit in any objective way from any of these
namespaces being inline since the artifacts in the literals namespace neither depend on
ADL nor are templates in need of user-defined specializations; hence, having all noninline
namespaces with appropriate using declarations would have been functionally indistin-
guishable from the bifurcated approach taken.

11CWG issue 2278; hinnant17

1082

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
no code font, reg heading font

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes




