
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1079 — #1105

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

inline namespace std {} before including any standard headers. This practice is, however,
explicitly called out as ill-formed within the C++11 Standard. Although not uniformly
diagnosed as an error by all compilers, attempting this forbidden practice is apt to lead to
surprising problems even if not diagnosed as an error immediately.

Inconsistent use of inline keyword is ill formed, no diagnostic required

It is an ODR violation, IFNDR, for a nested namespace to be inline in one translation
unit and noninline in another. And yet, the motivating use case of this feature relies on
the linker to actively complain whenever different, incompatible versions — nested within
different, possibly inline-inconsistent, namespaces of an ABI — are used within a single
executable. Because declaring a nested namespace inline does not, by design, affect linker-
level symbols, developers must take appropriate care, such as effective use of header files,
to defend against such preventable inconsistencies.

Annoyances

Inability to redeclare across namespaces impedes code factoring

An essential feature of an inline namespace is the ability to declare a template within a
nested inline namespace and then specialize it within its enclosing namespace. For example,
we can declare

• a type template, S0

• a couple of function templates, f0 and g0

• and a member function template h0, which is similar to f0

in an inline namespace, inner, and specialize each of them, such as for int, in the enclosing
namespace, outer:
namespace outer // enclosing namespace
{

inline namespace inner // nested namespace
{

template<typename T> struct S0; // declarations of
template<typename T> void f0(); // various class
template<typename T> void g0(T v); // and function
struct A0 { template <typename T> void h0(); }; // templates

}

template<> struct S0<int> { }; // specializations
template<> void f0<int>() { } // of the various
void g0(int) { } /* overload not specialization */ // class and function
template<> void A0::h0<int>() { } // declarations above

} // in outer namespace

1079

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Cross-Out

lorihughes
Highlight
keep code font

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]




