
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1076 — #1102

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// client.cpp:
#include <abc_header1.h>
#include <abc_header2.h>

int function()
{

if (abc::smart() < 0) { return -1; } // uses smart() from abc_header1.h
return abc::z() + abc::i() + abc::a() + abc::h() + abc::c(); // Oops!

// Bug, silently uses the abc::i() defined in abc_header1.h
}

In trying to cede control to the client as to whether the declared or imported abc::i()
function is to be used, we have, in effect, invited the defect illustrated in the above exam-
ple whereby the client was expecting the abc::i() from abc_header2.h and yet picked
up the one from abc_header1.h by default. Had the nested namespace in abc_header2.h
been declared inline, the qualified name abc::i() would have automatically been ren-
dered ambiguous in namespace abc, the translation would have failed safely, and the defect
would have been exposed at compile time. The downside, however, is that no method would
be available to recover nominal access to the abc::i() defined in abc_header1.h once
abc_header2.h is included, even though the two functions (e.g., including their mangled
names at the ABI level) remain distinct.

Potential Pitfalls

inline-namespace–based versioning doesn’t scale

The problem with using inline namespaces for ABI link safety is that the protection they
offer is only partial; in a few major places, critical problems can linger until run time instead
of being caught at compile time.
Controlling which namespace is inline using macros, such as was done in the
my::VersionedThing example in Use Cases — Link-safe ABI versioning on page 1067, will
result in code that directly uses the unversioned name, my::VersionedThing being bound
directly to the versioned name my::v1::VersionedThing or my::v2::VersionedThing, along
with the class layout of that particular entity. Sometimes details of using the inline name-
space member are not resolved by the linker, such as the object layout when we use types
from that namespace as data members in other objects:
// my_thingaggregate.h:

// ...
#include <my_versionedthing.h>
// ...

namespace my
{

1076

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight
Cap I, regular heading font

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]




