
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1070 — #1096

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

// my_thing.cpp:
#include <my_thing.h>

namespace my // outer namespace (used directly by clients)
{

inline namespace impl_v2 // inner namespace (for implementer use only)
{

Thing::Thing() : d(0.0) // Load 8-byte value into Thing's data member.
{
}

}
}

Now clients that attempt to link against the new library will not find the linker symbol,
such as _Z...impl_v1...v, and the link stage will fail. Once clients recompile, however,
the undefined linker symbol will match the one available in the new my_thing.o, such as
_Z...impl_v2...v, the link stage will succeed, and the program will again work as expected.
What’s more, we have the option of keeping the original implementation. In that case,
existing clients that have not as yet recompiled will continue to link against the old version
until it is eventually removed after some suitable deprecation period.
As a more realistic second example of using inline namespaces to guard against linking
incompatible versions, suppose we have two versions of a Key class in a security library in
the enclosing namespace, auth — the original version in a regular nested namespace v1,
and the new current version in an inline nested namespace v2:
#include <cstdint> // std::uint32_t, std::unit64_t

namespace auth // outer namespace (used directly by clients)
{

namespace v1 // inner namespace (optionally used by clients)
{

class Key
{
private:

std::uint32_t d_key;
// sizeof(Key) is 4 bytes.

public:
std::uint32_t key() const; // stable interface function

// ...
};

}

inline namespace v2 // inner namespace (default current version)
{

class Key

1070

lorihughes
Highlight

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]




