
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1067 — #1093

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

best; see Potential Pitfalls — Relying on inline namespaces to solve library evolution on
page 1077.
Providing separate namespaces for each successive version has an additional advantage in
an entirely separate dimension: avoiding inadvertent, difficult-to-diagnose, latent linkage
defects. Though not demonstrated by this specific example, cases do arise where simply
changing which of the version namespaces is declared inline might lead to an ill formed,
no-diagnostic required (IFNDR) program. This issue might ensue when one or more of
its translation units that use the library are not recompiled before the program is relinked
to the new static or dynamic library containing the updated version of the library software;
see Link-safe ABI versioning below.
For distinct nested namespaces to guard effectively against accidental link-time errors, the
symbols involved have to (1) reside in object code (e.g., a header-only library would
fail this requirement) and (2) have the same name mangling (i.e., linker symbol) in both
versions. In this particular instance, however, the signature of the parsemember function
of parser did change, and its mangled name will consequently change as well; hence the
same undefined symbol link error would result either way.

Link-safe ABI versioning

inline namespaces are not intended as a mechanism for source-code versioning; instead,
they prevent programs from being ill formed due to linking some version of a library with
client code compiled using some other, typically older version of the same library. Below, we
present two examples: a simple pedagogical example to illustrate the principle followed by a
more real-world example. Suppose we have a library component my_thing that implements
an example type, Thing, which wraps an int and initializes it with some value in its default
constructor defined out-of-line in the cpp file:
struct Thing // version 1 of class Thing
{

int i; // integer data member (size is 4)
Thing(); // original noninline constructor (defined in .cpp file)

};

Compiling a source file with this version of the header included might produce an object file
that can be incompatible yet linkable with an object file resulting from compiling a different
source file with a different version of this header included:
struct Thing // version 2 of class Thing
{

double d; // double-precision floating-point data member (size is 8)
Thing(); // updated noninline constructor (defined in .cpp file)

};

To make the problem that we are illustrating concrete, let’s represent the client as a main pro-
gram that does nothing but create a Thing and print the value of its only data member, i.

1067

lorihughes
Highlight
Cap I, no code, gloss

lorihughes
Highlight

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]




