
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1064 — #1090

i
i

i
i

i
i

inline namespace Chapter 3 Unsafe Features

public:
Parser();
int parse(T* result, const char* input);

// Load result from null-terminated input; return 0 (on
// success) or nonzero (with no effect on result).

};

template <typename T>
double analyze(const Parser<T>& parser);

}
}

As suggested by the name v1, this namespace serves primarily as a mechanism to sup-
port library evolution through API and ABI versioning (see Link-safe ABI versioning on
page 1067 and Build modes and ABI link safety on page 1071). The need to specialize
class Parser and, independently, the reliance on ADL to find the free function template
analyze require the use of inline namespaces, as opposed to a conventional namespace
followed by a using directive.
Note that, whenever a subsystem starts out directly in a first-level namespace and is subse-
quently moved to a second-level nested namespace for the purpose of versioning, declaring
the inner namespace inline is the most reliable way to avoid inadvertently destabiliz-
ing existing clients; see also Enabling selective using directives for short-named entities on
page 1074.
Now suppose we decide to enhance parselib in a non–backwards-compatible manner, such
that the signature of parse takes a second argument size of type std::size_t to allow
parsing of non–null-terminated strings and to reduce the risk of buffer overruns. Instead
of unilaterally removing all support for the previous version in the new release, we can create
a second namespace, v2, containing the new implementation and then, at some point, make
v2 the inline namespace instead of v1:
#include <cstddef> // std::size_t

namespace parselib
{

namespace v1 // Notice that v1 is now just a nested namespace.
{

template <typename T>
class Parser
{

// ...

public:
Parser();
int parse(T* result, const char* input);

1064

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]




