
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1059 — #1085

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

In the example above, a client invoking f with an object of type outer::U fails to compile
because f(outer::U) is declared in the nested inner namespace, which is not the same as
declaring it in outer. Because ADL does not look into namespaces added with the using
directive, ADL does not find the needed outer::inner::f function. Similarly, the type V,
defined in namespace outer::inner, is not declared in the same namespace as the function
g that operates on it. Hence, when g is invoked from within client on an object of type
outer::inner::V, ADL again does not find the needed function outer::g(outer::V).
Simply making the inner namespace inline solves both of these ADL-related problems.
All transitively nested inline namespaces — up to and including the most proximate non-
inline enclosing namespace — are treated as one with respect to ADL.

The ability to specialize templates declared in a nested inline namespace

The third property that distinguishes inline namespaces from conventional ones, even when
followed by a using directive, is the ability to specialize a class template defined within
an inline namespace from within an enclosing one; this ability holds transitively up to and
including the most proximate noninline namespace:
namespace out // proximate noninline outer namespace
{

inline namespace in1 // first-level nested inline namespace
{

inline namespace in2 // second-level nested inline namespace
{

template <typename T> // primary class template general definition
struct S { };

template <> // class template full specialization
struct S<char> { };

}

template <> // class template full specialization
struct S<short> { };

}

template <> // class template full specialization
struct S<int> { };

}

using namespace out; // conventional using directive

template <>
struct S<int> { }; // Error, cannot specialize from this scope

Note that the conventional nested namespace out followed by a using directive in the
enclosing namespace does not admit specialization from that outermost namespace, whereas

1059

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight
set all occurrences of this term as \emcppsgloss[using directive]{\lstinline!using! directive}

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight

lorihughes
Highlight
no code, regular heading font

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]




