
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1057 — #1083

i
i

i
i

i
i

Section 3.1 C++11 inline namespace

Unless both type and variable entities are declared within the same scope, no preference is
given to variable names; the name of an entity in an inner scope hides a like-named entity
in an enclosing scope:
void f()
{

double B; static_assert(sizeof(B) == 8, ""); // variable
{ static_assert(sizeof(B) == 8, ""); // variable

struct B { int d; }; static_assert(sizeof(B) == 4, ""); // type
} static_assert(sizeof(B) == 8, ""); // variable

}

When an entity is declared in an enclosing namespace and another entity having the same
name hides it in a lexically nested scope, then (apart from inline namespaces) access to a
hidden element can generally be recovered by using scope resolution:
struct C { double d; }; static_assert(sizeof(C) == 8, "");

void g()
{ static_assert(sizeof(C) == 8, ""); // type

int C; static_assert(sizeof(C) == 4, ""); // variable
static_assert(sizeof(::C) == 8, ""); // type

} static_assert(sizeof(C) == 8, ""); // type

A conventional nested namespace behaves as one might expect:
namespace outer
{

struct D { double d; }; static_assert(sizeof(D) == 8, ""); // type

namespace inner
{ static_assert(sizeof(D) == 8, ""); // type

int D; static_assert(sizeof(D) == 4, ""); // var
} static_assert(sizeof(D) == 8, ""); // type

static_assert(sizeof(inner::D) == 4, ""); // var
static_assert(sizeof(outer::D) == 8, ""); // type

using namespace inner;//static_assert(sizeof(D) == 0, ""); // Error
static_assert(sizeof(inner::D) == 4, ""); // var
static_assert(sizeof(outer::D) == 8, ""); // type

} static_assert(sizeof(outer::D) == 8, ""); // type

In the example above, the inner variable name, D, hides the outer type with the same
name, starting from the point of D’s declaration in inner until inner is closed, after which
the unqualified name D reverts to the type in the outer namespace. Then, right after the
subsequent using namespace inner; directive, the meaning of the unqualified name D in
outer becomes ambiguous, shown here with a static_assert that is commented out; any
attempt to refer to an unqualified D from here to the end of the scope of outer will fail
to compile. The type entity declared as D in the outer namespace can, however, still be

1057

lorihughes
Highlight
[remove code font and set in glossary font]

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

