“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1051 — #1077

Section 3.1 C++11 friend '"11
if (n) { t->visitInOrder(n); } // optionally defined in derived
if (n) { t->traverse(n->d_right); } // " ! " "
if (n) { t->visitPostOrder(n); Y 7/ " " " "
}
1

The factored traversal mechanism is implemented in the Traverser base-class template. A
proper subset of the four customization points, that is, the four member functions invoked
from the public traverse function of the Traverser base class, is implemented as appro-
priate in the derived class, identified by T. Each of these customization functions is invoked
in order. Notice that the traverse function is safe to call on a nullptr as each individ-
ual customization-function invocation will be independently bypassed if its supplied Node
pointer is null. If a customization function is defined in the derived class, that version of it
is invoked; otherwise, the corresponding empty inline base-class version of that function is
invoked instead. This approach allows for any of the three traversal orders to be implemented
simply by supplying an appropriately configured derived type where clients are obliged to
implement only the portions they need. Even the traversal itself can be modified, as we will
soon see, where we create the very data structure we’re traversing.

Let’s now look at how derived-class authors might use this pattern. First, we’ll write a
traversal class that fully populates a tree to a specified depth:

struct FillToDepth : Traverser<FillToDepth>

{
using Base = Traverser<FillToDepth>; // similar to a local typedef
int d_depth; // final "height" of the tree
int d_currentDepth; // current distance from the root
FillToDepth(int depth) : d_depth(depth), d_currentDepth(0) { }
void traverse(Node*& n)
{
if (d_currentDepth++ < d_depth && !n) // descend; if not balanced...
{
n = new Node; // Add node since it's not already there.
}
Base::traverse(n); // Recurse by invoking the base version.
--d_currentDepth; // Ascend.
}
}

The derived class’s version of the traverse member function acts as if it overrides the
traverse function in the base-class template and then, as part of its re-implementation,
defers to the base-class version to perform the actual traversal.

1051

lorihughes
Inserted Text
explicit

lorihughes
Highlight
[remove code font]

