
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 105 — #131

i
i

i
i

i
i

Section 1.1 C++11 override

void i(int) override; // OK, explicitly overrides Base::i(int)
};

Using this feature expresses design intent so that (1) human readers are aware of it and (2)
compilers can validate it.
As noted, override is a contextual keyword. C++11 introduces keywords that have special
meaning only in certain contexts. In this case, override is a keyword in the context of a
declaration, but not otherwise using it as the identifier for a variable name, for example, is
perfectly fine:
int override = 1; // OK

Use Cases

Ensuring that a member function of a base class is being overridden

Consider the following polymorphic hierarchy of error-category classes, as we might have
defined them using C++03:
struct ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition);
virtual bool equivalent(int code, const ErrorCondition& condition);

};

struct AutomotiveErrorCategory : ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition);
virtual bool equivolent(int code, const ErrorCondition& condition);

};

Notice that there is a defect in the last line of the example above: equivalent has been
misspelled. Moreover, the compiler did not catch that error. Clients calling equivalent on
AutomotiveErrorCategory will incorrectly invoke the base-class function. If the function in
the base class happens to be defined, the code might compile and behave unexpectedly at
run time. Now, suppose that over time the interface is changed by marking the equivalence-
checking function const to bring the interface closer to that of std::error_category:
struct ErrorCategory
{

virtual bool equivalent(const ErrorCode& code, int condition) const;
virtual bool equivalent(int code, const ErrorCondition& condition) const;

};

105

lorihughes
Cross-Out

lorihughes
Inserted Text
if and only if it appears after the parameter list of a member function declaration;




