
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1049 — #1075

i
i

i
i

i
i

Section 3.1 C++11 friend '11

int d_side2;
int d_side3;

public:
Triangle(int side1, int side2, int side3)

: d_side1(side1), d_side2(side2), d_side3(side3) { }

void draw() const
{

std::cout << "Triangle(side1 = " << d_side1 << ", "
"side2 = " << d_side2 << ", "
"side3 = " << d_side3 << ")\n";

}
};

Unfortunately, we forgot to change the base-class type parameter when we copy-pasted from
Rectangle.
Let’s now create a new test that exercises all three and see what happens on our platform:
void test2()
{

print(Circle(1)); // prints: Circle(radius = 1)
print(Rectangle(2, 3)); // prints: Rectangle(length = 2, width = 3)
print(Triangle(4, 5, 6)); // prints: Rectangle(length = 4, width = 5) ?!
Shape<int> bug; // Compiles?!

}

As should by now be clear, a defect in our Triangle implementation results in hard unde-
fined behavior that could have been prevented at compile time by using the extended
friend syntax. Had we defined the CRTP base-class template’s default constructor to be
private and made its type parameter a friend, we could have prevented the copy-paste error
with Triangle and suppressed the ability to create a Shape object without deriving from it
(e.g., see bug in the previous code snippet):
template <typename T>
class Shape
{

Shape() = default; // Default the default constructor to be private.
friend T; // Ensure only a type derived from T has access.

};

Generally, whenever we are using the CRTP, making just the default constructor of the
base-class template private and having it befriend its type parameter is typically a trivial
local change, is helpful in avoiding various forms of accidental misuse and is unlikely to

1049

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
,




