
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1041 — #1067

i
i

i
i

i
i

Section 3.1 C++11 friend '11

int& objId = widget.objectId(PassKey<Odb>()); // cannot call out of Odb
// Error, Passkey<T>::Passkey() [withT = Odb] is private within
// this context.

}

Notice that use of the extended friend syntax to befriend a template parameter and thereby
enable the PassKey idiom here improved the granularity with which we effectively grant
privileged access to an individually named type but didn’t fundamentally alter the testability
issues that result when private access to specific C++ types is allowed to extend across
physical boundaries; again, see Potential Pitfalls — Long-distance friendship below.

Curiously recurring template pattern

Befriending a template parameter via extended friend declarations can be helpful when
implementing the curiously recurring template pattern (CRTP). For use-case exam-
ples and more information on the pattern itself, see Appendix — Curiously Recurring Tem-
plate Pattern Use Cases on page 1042.

Potential Pitfalls

Long-distance friendship

Since before C++ was standardized, granting private access via a friend declaration across
physical boundaries, known as long-distance friendship, was observed6,7 to potentially lead
to designs that are qualitatively more difficult to understand, test, and maintain. When
a user-defined type, X, befriends some other specific type, Y, in a separate, higher-level
translation unit, testing X thoroughly without also testing Y is no longer possible. The effect
is a test-induced cyclic dependency between X and Y. Now imagine that Y depends on a
sequence of other types, C1, C2, …, CN2, each defined in its own physical component, CI,
where CN2 depends on X. The result is a physical design cycle of size N. As N increases,
the ability to manage complexity quickly becomes intractable. Accordingly, the two design
imperatives that were most instrumental in shaping the C++20 modules feature were (1)
to have no cyclic module dependencies and (2) to avoid intermodule friendships.

See Also

• “using Aliases” (§1.1, p. 133) describes a means to create type aliases and alias tem-
plates which can be befriended via the extended friend declarations.

6lakos96, section 3.6.1, “”Long-Distance Friendship and Implied Dependency,” pp. 141–144
7lakos20, section 2.6, “Component Design Rules,” pp. 342–370, specifically p. 367 and p. 362

1041

lorihughes
Inserted Text
[space]

lorihughes
Cross-Out

lorihughes
Inserted Text
K

lorihughes
Cross-Out

lorihughes
Inserted Text
K




