
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1031 — #1057

i
i

i
i

i
i

Section 3.1 C++11 friend '11

Extended friend Declarations

The target of a friend declaration has been extended to allow designation of (1) a type
alias, (2) a named template parameter, or (3) any previously declared class type such
that if the target is not found the friend declaration will simply fail to compile rather than
introduce a new declaration into the enclosing scope.

Description

A friend declaration located within a given user-defined type (UDT) grants a designated
type (or free function) access to private and protected members of that class. Because the ex-
tended friend syntax does not affect function friendships, this feature section addresses ex-
tended friendship only between types.
Prior to C++11, the Standard required an elaborated type specifier to be provided after
the friend keyword to designate some other class as being a friend of a given type.
An elaborated type specifier for a class is a syntactical element having the form
<class|struct|union> <identifier>. Elaborated type specifiers can be used to refer to
a previously declared entity or to declare a new one, with the restriction that such an entity
is one of class, struct, or union:
// C++03

struct S;
class C;
enum E { };

struct X0
{

friend S; // Error, not legal C++03
friend struct S; // OK, refers to S above
friend class S; // OK, refers to S above (might warn)
friend class C; // OK, refers to C above
friend class C0; // OK, declares C0 in X0's namespace
friend union U0; // OK, declares U0 in X0's namespace
friend enum E; // Error, enum cannot be a friend.
friend enum E2; // Error, enum cannot be forwarddeclared.

};

This restriction prevents other potentially useful entities, e.g., type aliases and template
parameters, from being designated as friends:

1031

lorihughes
Inserted Text
,

