“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1023 — #1049

Section 3.1 C++11 final

that even if the virtual deallocate function were inline, unless it is declared final or the
runtime type is somehow known at compile time, there is no sure way for the compiler to
know that the function isn’t overridden by a derived type.

In the case of TypeB, however, the function is both declared final and defined inline; hence,
the virtual dispatch can be reliably sidestepped, the empty function can be inlined, and a
true no-op is achieved with no runtime overhead.

Potential Pitfalls
Contextual keywords are contextual

Historically, the Standards Committee has taken different approaches to adding new key-
words to the language. C++11 added ten new keywords to the language — alignas,
alignof, char16_t, char32_t, constexpr, decltype, noexcept, nullptr, static_assert,
and thread_local” — and thus made ten potential tokens no longer usable as identifiers.
When considering new keywords, much effort is expended to determine the impact of that
word’s change in status on existing codebases. Two identifiers, override and final, were
not made keywords and were instead given special meaning when used in contexts where
previously identifiers were not syntactically allowed. This approach avoided possible code
breakage for any existing codebases using these words as identifiers, at the cost of occasional
confusion.

When used after a function declaration, override and final do not add any significant
parsing ambiguity to the language; arbitrary identifiers were not syntactically valid in that
position anyway, so confusion is minimal. When used on a class declaration, however,
final’s meaning is not determined until tokens after it are parsed to distinguish between a
variable declaration and a class definition:

struct S1 final; // Error, variable named final of incomplete type
struct S2 final { }; // 0K, final class definition
struct S2 final; // OK, variable named final of complete type S2

Notice that the variable declarations in the example above both look like they might be
an attempt to forward-declare a struct that is final but are instead a totally different
language construct.

Systemic lost opportunities for reuse

Both final and override are similar in their complexity yet different in the potential
adverse implications that widespread use can impose. Such ubiquitous use will depend heav-
ily on the scale and nature of the development process employed. In some development

7C++14 and C++17 added no new keywords. C++20 added char8_t, co_await, co_return, co_yield
concept, consteval, constinit, and requires, notably mixing some words potentially already used as iden-
tifiers (concept and requires) with a collection of more obscure words that had little chance of conflicting
with existing codebases.

1023


lorihughes
Highlight
[remove code font]




