
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1021 — #1047

i
i

i
i

i
i

Section 3.1 C++11 final

particular, notice that g(y) is not accessible at level 1, can be used only with non-negative
values at level 2 (i.e., g(y) has a narrow contract), and is usable with all syntactically
legal values at level 3 (i.e., g(y) has a wide contract). Note that this same sort of
interface widening can apply in the absence of virtual functions through judicious use
of hiding nonvirtual functions; see Potential Pitfalls — Systemic lost opportunities for reuse
on page 1023.
Concrete leaf nodes can then be derived from the protocol hierarchy to implement the desired
level of service as efficiently as practical. In cases where multiple concrete nodes need to share
the same implementation of one or more functions, we can derive an intermediate node
from the appropriate protocol that doesn’t widen the interface at all but does implement
one or more of the pure abstract functions; such an impure abstract node is known as a
partial implementation. When the implementation of one of these functions is trivial,
declaring that virtual function to also be inline might be sensible. Since, by design, there
will be no need to further override that function, we can declare it to be final as well.
For performance-critical clients that would otherwise consume the concrete object via the
pure abstract interface from which this partial implementation derives, we might decide to
instead take the partial implementation itself as the reference type. Because one or more
functions are both inline and final, the client can dispense with runtime dispatch and
inline the virtual functions directly as discussed in Restoring performance lost to mocking
on page 1017.
As a real-world example, consider a simplified protocol hierarchy for memory allocation:
#include <cstddef> // std::size_t

struct Allocator
{

virtual void* allocate(std::size_t numBytes) = 0;
// Allocate a block of memory of at least the specified numBytes.

virtual void deallocate(void* address) = 0;
// Deallocate the block at the specified address.

};

struct ManagedAllocator : Allocator
{

virtual void release() = 0;
// Reclaim all memory currently allocated from this allocator.

};

A monotonic allocator is a kind of managed allocator that allocates memory sequen-
tially in a buffer subject to alignment requirements. In this class of allocators, the
deallocatemethod is always a no-op; memory is reclaimed only when themanaged allocator
is destroyed or its release method is invoked:

1021

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]




