
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1008 — #1034

i
i

i
i

i
i

final Chapter 3 Unsafe Features

struct D0 : B0 // D0 inherits publicly from B0.
{

void f(); // OK, overrides void B0::f()
void g(); // Error, void B0::g() is final.
void g() const; // OK, void B0::g() const is not final.

};

As the simple example above illustrates, decorating a virtual member function — e.g.,
B::g() — with final precludes overriding only that specific function signature. Note that
when redeclaring a final function outside the class definition (e.g., to define the function),
the final specifier is not permitted:
void B0::g() final { } // Error, final not permitted outside class definition
void B0::g() { } // OK

final on destructors

The use of final on a virtual destructor precludes inheritance entirely, as any derived class
must have either an implicit or explicit destructor that will attempt to override the final
base class destructor:
struct B1
{

virtual ~B1() final;
};

struct D1a : B1 { }; // Error, implicitly tries to override B1::~B1()

struct D1b : B1
{

virtual ~D1b() { } // Error, explicitly tries to override B1::~B1()
};

Any attempt to suppress the destructor in the derived class, e.g., using = delete (see
Section 1.1.“Deleted Functions” on page 53), will be in vain. If the intent is to suppress
derivation entirely, a direct way would be to declare the type itself final; see final user-
defined types on page 1011.

final pure virtual functions

Although declaring a pure virtual function final is allowed, doing so makes the type an
abstract class and also prevents making any derived type a concrete class:

1008

lorihughes
Inserted Text
0




