
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 100 — #126

i
i

i
i

i
i

nullptr Chapter 1 Safe Features

Because std::nullptr_t is its own distinct type, overloading on it is possible:
#include <cstddef> // std::nullptr_t

void g(void*); // (1)
void g(int); // (2)
void g(std::nullptr_t); // (3)

void f()
{

char buf[] = "hello";
g(buf); // OK, (1) void g(void*)
g(0); // OK, (2) void g(int)
g(nullptr); // OK, (3) void g(std::nullptr_t)
g(NULL); // Error, ambiguous (1), (2), or (3)

}

Use Cases

Improvement of type safety

In pre-C++11 codebases, using the NULL macro was a common way of indicating, mostly to
the human reader, that the literal value the macro conveys is intended specifically to repre-
sent a null address rather than the literal int value 0. In the C Standard, the macro NULL is
defined as an implementation-defined integral or void* constant. Unlike C, C++ forbids
conversions from void* to arbitrary pointer types and instead, prior to C++11, defined NULL
as an “integral constant expression rvalue of integer type that evaluates to zero”; any integer
literal, e.g., 0, 0L, 0U, or 0LLU, satisfies this criterion. From a type-safety perspective, its
implementation-defined definition, however, makes using NULL only marginally better suited
than a raw literal 0 to represent a null pointer. It is worth noting that as of C++11, the def-
inition of NULL has been expanded to, in theory, permit nullptr as a conforming definition;
as of this writing, however, no major compiler vendors do so.1

As just one specific illustration of the added type safety provided by nullptr, imagine that
the coding standards of a large software company historically required that values returned
via output parameters (as opposed to a return statement) are always returned via pointer
to a modifiable object. Functions that return via argument typically do so to reserve the
function’s return value to communicate status.2 A function in this codebase might “zero”
the output parameter’s local pointer variable to indicate and ensure that nothing more is
to be written. The function below illustrates three different ways of doing this:

1Both GCC and Clang default to 0L (long int), while MSVC defaults to 0 (int). Such definitions are
unlikely to change since existing code could cease to compile or possibly silently present altered runtime
behavior.

2See lakos96, section 9.1.11, “Pass Argument by Value, Reference, or Pointer,” pp. 621–628, specifically
the Guideline at the bottom of p. 623: “Be consistent about returning values through arguments (e.g., avoid
declaring nonconst reference parameters).”

100

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
act on that permission

lorihughes
Inserted Text
[FN]
Add a FN citation for this quote: iso03, section 4.10, "Pointer conversions," paragraph 1, p.62.

